Approximating An Integral By Expanding The Integrand As A Power Series In Ε \epsilon Ε

by ADMIN 87 views

Introduction

In calculus, approximating integrals is a crucial technique used to estimate the value of a definite integral. One of the methods used to approximate an integral is by expanding the integrand as a power series in a small parameter, such as ϵ. This technique is particularly useful when dealing with integrals that involve a small parameter, and the integrand can be expressed as a power series in that parameter. In this article, we will explore how to approximate an integral by expanding the integrand as a power series in ϵ.

The Integral Expression

The integral expression we are given is:

T=0adxa2+a4ϵ2(x2+ϵx42)T=\int_0^a \frac{dx}{\sqrt{a^2+\frac{a^4\epsilon}{2}-(x^2+\frac{\epsilon x^4}{2}})}

where a,ϵa, \epsilon are some positive constants. The hint is to expand the integrand as a power series in ϵ.

Expanding the Integrand as a Power Series in ϵ

To expand the integrand as a power series in ϵ, we need to express the integrand as a power series in ϵ. We can do this by using the binomial theorem to expand the square root term in the integrand.

First, let's rewrite the integrand as:

1a2+a4ϵ2(x2+ϵx42)=1(a2x2)(1+a2ϵ2(a2x2)ϵx22(a2x2))\frac{1}{\sqrt{a^2+\frac{a^4\epsilon}{2}-(x^2+\frac{\epsilon x^4}{2}})} = \frac{1}{\sqrt{(a^2-x^2)(1+\frac{a^2\epsilon}{2(a^2-x^2)}-\frac{\epsilon x^2}{2(a^2-x^2)})}}

Now, we can use the binomial theorem to expand the square root term in the integrand:

(a2x2)(1+a2ϵ2(a2x2)ϵx22(a2x2))=(a2x2)(1+a2ϵ2(a2x2)ϵx22(a2x2))=(a2x2)(1+a2ϵ4(a2x2)ϵx24(a2x2))\sqrt{(a^2-x^2)(1+\frac{a^2\epsilon}{2(a^2-x^2)}-\frac{\epsilon x^2}{2(a^2-x^2)})} = \sqrt{(a^2-x^2)}\sqrt{(1+\frac{a^2\epsilon}{2(a^2-x^2)}-\frac{\epsilon x^2}{2(a^2-x^2)})} \\ = \sqrt{(a^2-x^2)}\left(1+\frac{a^2\epsilon}{4(a^2-x^2)}-\frac{\epsilon x^2}{4(a^2-x^2)}\right)

Now, we can substitute this expression back into the original integral:

T=0adx(a2x2)(1+a2ϵ4(a2x2)ϵx24(a2x2))T=\int_0^a \frac{dx}{\sqrt{(a^2-x^2)}\left(1+\frac{a^2\epsilon}{4(a^2-x^2)}-\frac{\epsilon x^2}{4(a^2-x^2)}\right)}

Approximating the Integral

To approximate the integral, we can use the power series expansion of the integrand. We can expand the integrand as a power series in ϵ:

1(a2x2)(1+a2ϵ4(a2x2)ϵx24(a2x2))=1(a2x2)(1a2ϵ4(a2x2)+ϵx24(a2x2))\frac{1}{\sqrt{(a^2-x^2)}\left(1+\frac{a^2\epsilon}{4(a^2-x^2)}-\frac{\epsilon x^2}{4(a^2-x^2)}\right)} = \frac{1}{\sqrt{(a^2-x^2)}}\left(1-\frac{a^2\epsilon}{4(a^2-x^2)}+\frac{\epsilon x^2}{4(a^2-x^2)}\right)

Now, we can substitute this expression back into the original integral:

T=0a1(a2x2)(1a2ϵ4(a2x2)+ϵx24(a2x2))dxT=\int_0^a \frac{1}{\sqrt{(a^2-x^2)}}\left(1-\frac{a^2\epsilon}{4(a^2-x^2)}+\frac{\epsilon x^2}{4(a^2-x^2)}\right)dx

Evaluating the Integral

To evaluate the integral, we can use the following substitution:

u=a2x2u = a^2-x^2

du=2xdxdu = -2x dx

xdx=12dux dx = -\frac{1}{2} du

Now, we can substitute this expression back into the original integral:

T=0a1(a2x2)(1a2ϵ4(a2x2)+ϵx24(a2x2))dx=a201u(1a2ϵ4u+ϵu4u)(12du)=12a201u(1a2ϵ4u+ϵu4u)duT=\int_0^a \frac{1}{\sqrt{(a^2-x^2)}}\left(1-\frac{a^2\epsilon}{4(a^2-x^2)}+\frac{\epsilon x^2}{4(a^2-x^2)}\right)dx \\ = \int_{a^2}^0 \frac{1}{\sqrt{u}}\left(1-\frac{a^2\epsilon}{4u}+\frac{\epsilon u}{4u}\right)\left(-\frac{1}{2} du\right) \\ = -\frac{1}{2} \int_{a^2}^0 \frac{1}{\sqrt{u}}\left(1-\frac{a^2\epsilon}{4u}+\frac{\epsilon u}{4u}\right) du

Solving the Integral

To solve the integral, we can use the following substitution:

v=uv = \sqrt{u}

dv=12ududv = \frac{1}{2\sqrt{u}} du

12udu=dv\frac{1}{2\sqrt{u}} du = dv

Now, we can substitute this expression back into the original integral:

T=12a201u(1a2ϵ4u+ϵu4u)du=12a0(1a2ϵ4v2+ϵv24v2)dvT=-\frac{1}{2} \int_{a^2}^0 \frac{1}{\sqrt{u}}\left(1-\frac{a^2\epsilon}{4u}+\frac{\epsilon u}{4u}\right) du \\ = -\frac{1}{2} \int_{a}^0 \left(1-\frac{a^2\epsilon}{4v^2}+\frac{\epsilon v^2}{4v^2}\right) dv

Evaluating the Integral

To evaluate the integral, we can use the following substitution:

w=v2w = v^2

dw=2vdvdw = 2v dv

vdv=12dwv dv = \frac{1}{2} dw

Now, we can substitute this expression back into the original integral:

T=12a0(1a2ϵ4v2+ϵv24v2)dv=12a20(1a2ϵ4w+ϵw4w)12dwT=-\frac{1}{2} \int_{a}^0 \left(1-\frac{a^2\epsilon}{4v^2}+\frac{\epsilon v^2}{4v^2}\right) dv \\ = -\frac{1}{2} \int_{a^2}^0 \left(1-\frac{a^2\epsilon}{4w}+\frac{\epsilon w}{4w}\right) \frac{1}{2} dw

Solving the Integral

To solve the integral, we can use the following substitution:

z=wa2z = \frac{w}{a^2}

dz=1a2dwdz = \frac{1}{a^2} dw

dw=a2dzdw = a^2 dz

Now, we can substitute this expression back into the original integral:

T=12a20(1a2ϵ4w+ϵw4w)12dw=1410(1ϵ4z+ϵz4z)a2dzT=-\frac{1}{2} \int_{a^2}^0 \left(1-\frac{a^2\epsilon}{4w}+\frac{\epsilon w}{4w}\right) \frac{1}{2} dw \\ = -\frac{1}{4} \int_{1}^0 \left(1-\frac{\epsilon}{4z}+\frac{\epsilon z}{4z}\right) a^2 dz

Evaluating the Integral

To evaluate the integral, we can use the following substitution:

y=1zy = 1-z

dy=dzdy = -dz

dz=dydz = -dy

Now, we can substitute this expression back into the original integral:

T=1410(1ϵ4z+ϵz4z)a2dz=1401(1ϵ4(1y)+ϵ(1y)4(1y))a2(dy)T=-\frac{1}{4} \int_{1}^0 \left(1-\frac{\epsilon}{4z}+\frac{\epsilon z}{4z}\right) a^2 dz \\ = -\frac{1}{4} \int_{0}^1 \left(1-\frac{\epsilon}{4(1-y)}+\frac{\epsilon (1-y)}{4(1-y)}\right) a^2 (-dy)

Solving the Integral

To solve the integral, we can use the following substitution:

x=1yx = 1-y

dx=dydx = -dy

dy=dxdy = -dx

Now, we can substitute this expression back into the original integral:

T=1401(1ϵ4(1y)+ϵ(1y)4(1y))a2(dy)=1401(1ϵ4x+ϵx4x)a2dxT=-\frac{1}{4} \int_{0}^1 \left(1-\frac{\epsilon}{4(1-y)}+\frac{\epsilon (1-y)}{4(1-y)}\right) a^2 (-dy) \\ = \frac{1}{4} \int_{0}^1 \left(1-\frac{\epsilon}{4x}+\frac{\epsilon x}{4x}\right) a^2 dx

Evaluating the Integral

To evaluate the integral, we can use the following substitution:

Q: What is the purpose of approximating an integral by expanding the integrand as a power series in ϵ?

A: The purpose of approximating an integral by expanding the integrand as a power series in ϵ is to estimate the value of a definite integral when the integrand can be expressed as a power series in a small parameter, such as ϵ.

Q: What is the first step in approximating an integral by expanding the integrand as a power series in ϵ?

A: The first step in approximating an integral by expanding the integrand as a power series in ϵ is to express the integrand as a power series in ϵ. This can be done by using the binomial theorem to expand the square root term in the integrand.

Q: How do you use the binomial theorem to expand the square root term in the integrand?

A: To use the binomial theorem to expand the square root term in the integrand, you need to rewrite the integrand as:

\frac{1}{\sqrt{a2+\frac{a4\epsilon}{2}-(x^2+\frac{\epsilon x^4}{2}})} = \frac{1}{\sqrt{(a2-x2)(1+\frac{a2\epsilon}{2(a2-x^2)}-\frac{\epsilon x2}{2(a2-x^2)})}}

Then,youcanusethebinomialtheoremtoexpandthesquareroottermintheintegrand: Then, you can use the binomial theorem to expand the square root term in the integrand:

\sqrt{(a2-x2)(1+\frac{a2\epsilon}{2(a2-x^2)}-\frac{\epsilon x2}{2(a2-x^2)})} = \sqrt{(a2-x2)}\sqrt{(1+\frac{a2\epsilon}{2(a2-x^2)}-\frac{\epsilon x2}{2(a2-x^2)})} \ = \sqrt{(a2-x2)}\left(1+\frac{a2\epsilon}{4(a2-x^2)}-\frac{\epsilon x2}{4(a2-x^2)}\right)

Q:Whatisthenextstepinapproximatinganintegralbyexpandingtheintegrandasapowerseriesinϵ?A:Thenextstepinapproximatinganintegralbyexpandingtheintegrandasapowerseriesinϵistosubstitutethepowerseriesexpansionoftheintegrandbackintotheoriginalintegral.Q:Howdoyousubstitutethepowerseriesexpansionoftheintegrandbackintotheoriginalintegral?A:Tosubstitutethepowerseriesexpansionoftheintegrandbackintotheoriginalintegral,youneedtosubstitutetheexpression: **Q: What is the next step in approximating an integral by expanding the integrand as a power series in ϵ?** -----------------------------------------------------------------------------------------

A: The next step in approximating an integral by expanding the integrand as a power series in ϵ is to substitute the power series expansion of the integrand back into the original integral.

Q: How do you substitute the power series expansion of the integrand back into the original integral?

A: To substitute the power series expansion of the integrand back into the original integral, you need to substitute the expression:

\frac{1}{\sqrt{(a2-x2)}\left(1+\frac{a2\epsilon}{4(a2-x^2)}-\frac{\epsilon x2}{4(a2-x^2)}\right)} = \frac{1}{\sqrt{(a2-x2)}}\left(1-\frac{a2\epsilon}{4(a-x^2)}+\frac{\epsilon x2}{4(a2-x^2)}\right)

backintotheoriginalintegral: back into the original integral:

T=\int_0^a \frac{1}{\sqrt{(a2-x2)}}\left(1-\frac{a2\epsilon}{4(a2-x^2)}+\frac{\epsilon x2}{4(a2-x^2)}\right)dx

Q:Whatisthefinalstepinapproximatinganintegralbyexpandingtheintegrandasapowerseriesinϵ?A:Thefinalstepinapproximatinganintegralbyexpandingtheintegrandasapowerseriesinϵistoevaluatetheintegral.Q:Howdoyouevaluatetheintegral?A:Toevaluatetheintegral,youneedtousethefollowingsubstitution: **Q: What is the final step in approximating an integral by expanding the integrand as a power series in ϵ?** -----------------------------------------------------------------------------------------

A: The final step in approximating an integral by expanding the integrand as a power series in ϵ is to evaluate the integral.

Q: How do you evaluate the integral?

A: To evaluate the integral, you need to use the following substitution:

u = a2-x2

du = -2x dx

x dx = -\frac{1}{2} du

Then,youcansubstitutethisexpressionbackintotheoriginalintegral: Then, you can substitute this expression back into the original integral:

T=\int_0^a \frac{1}{\sqrt{(a2-x2)}}\left(1-\frac{a2\epsilon}{4(a2-x^2)}+\frac{\epsilon x2}{4(a2-x^2)}\right)dx \ = \int_{a2}0 \frac{1}{\sqrt{u}}\left(1-\frac{a^2\epsilon}{4u}+\frac{\epsilon u}{4u}\right)\left(-\frac{1}{2} du\right) \ = -\frac{1}{2} \int_{a2}0 \frac{1}{\sqrt{u}}\left(1-\frac{a^2\epsilon}{4u}+\frac{\epsilon u}{4u}\right) du

Q:Whatisthefinalanswertotheintegral?A:Thefinalanswertotheintegralis: **Q: What is the final answer to the integral?** -----------------------------------------------------------------------------------------

A: The final answer to the integral is:

T = \frac{1}{4} \int_{0}^1 \left(1-\frac{\epsilon}{4x}+\frac{\epsilon x}{4x}\right) a^2 dx \ = \frac{1}{4} a^2 \left[x - \frac{\epsilon}{4} \ln x + \frac{\epsilon x}{4} \right]_{0}^1 \ = \frac{1}{4} a^2 \left[1 - \frac{\epsilon}{4} \ln 1 + \frac{\epsilon}{4} \right] \ = \frac{1}{4} a^2 \left[1 + \frac{\epsilon}{4} \right]

ConclusionApproximatinganintegralbyexpandingtheintegrandasapowerseriesinϵisapowerfultechniqueusedtoestimatethevalueofadefiniteintegral.Byfollowingthestepsoutlinedinthisarticle,youcanusethistechniquetoapproximateanintegralandobtainafinalanswer. **Conclusion** ----------

Approximating an integral by expanding the integrand as a power series in ϵ is a powerful technique used to estimate the value of a definite integral. By following the steps outlined in this article, you can use this technique to approximate an integral and obtain a final answer.